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ABSTRACT

Anti-mine blast deflectors are now used as a standard countermeasure to re-
duce landmine effects on a vehicle’s occupants, increasing their chances of survival.
The blast deflectors are submitted to an impulse from the soil ejecta and detona-
tion products resulting from a mine explosion. This memorandum presents algebraic
equations to estimate the total impulse imparted to these deflectors. The proposed
equations are suitable for use in a spreadsheet program and can be used by engineers
and scientists to develop anti-mine protection systems.

RÉSUMÉ

Des déflecteurs de souffle antimine sont maintenant utilisés de façon stan-
dard pour diminuer les effets de mines sur les occupants d’un véhicule, augmentant
ainsi leurs chances de survie. Les déflecteurs de souffle sont soumis à l’impulsion
causée par le sol et aux produits de détonation résultant de l’explosion d’une mine.
Ce mémorandum présente des équations algébriques pour estimer l’impulsion totale
transmise à ces déflecteurs. Ces équations peuvent être programmées dans un chiffrier
électronique et utilisées par les ingénieurs et scientifiques qui mettent au point les
systèmes de protection antimine.
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EXECUTIVE SUMMARY

Landmines, also called anti-tank mines, vehicle mines or simply mines, have

been encountered in recent peacekeeping missions in Cambodia, Somalia and Bosnia.

Even though the Canadian Forces have acquired some mine-proof vehicles from South

Africa, there is a need to develop anti-mine protection systems for the Canadian B-

fleet, ranging from the light support vehicle wheeled (LSVW) to the heavy engineer

support vehicle (HESV). To help meet this requirement, the Defence Research Es-

tablishment Valcartier has undertaken a defence R&D project to better protect the

occupants of soft-skinned vehicles from landmine effects.

The capability of estimating the impulse transmitted to a vehicle is essential

to predict or simulate the motion of the vehicle and its occupants subjected to a

landmine explosion. This memorandum provides algebraic equations to estimate

the total impulse on vehicle plates acting as blast deflectors—an important counter-

measure to deflect mine effects away from the vehicle’s occupants. These equations are

applied in a series of examples to obtain an estimate of the magnitude of the expected

impulses and to study the effects of some changes in the mine/target geometry on

the resulting impulses.

The impulse produced from a landmine explosion is mainly the result of deto-

nation products and soil ejecta impacting the target at high velocity. The U.S. Army

Tank-Automotive & Armaments Command developed in 1985 an empirical equation

to predict the vertical component of the specific impulse (impulse per unit area) for

buried charges with a pancake shape. That vertical component of the specific im-

pulse is used in this memorandum to derive algebraic equations for the total impulse

on horizontal, oblique and vertical blast deflectors. An expression for the maximum

impulse to be expected for a given standoff distance is also presented.

These equations will be used in the development of efficient anti-mine protec-

tion systems at DREV. However, more research is required to combine the impulse

on blast deflectors to the impulse on a wheel for an explosion under a tire.
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1 INTRODUCTION

Since the last World War and the creation of the United Nations, Canada

has been involved, to various degrees, in all UN peacekeeping missions. Landmines,

also called anti-tank mines, vehicle mines or simply mines, have been encountered

in recent peacekeeping missions in Cambodia, Somalia and Bosnia. While most UN

missions do not put the lives of the peacekeepers at immediate stake, these three

cited missions did indeed put soldiers in hazardous situations and good anti-mine

protection systems should have been required for most of the vehicles.

In Bosnia, 53% of landmine accidents occurred while the vehicles hit mines on

“cleared routes” (see [1]), showing that in a mine-infested region, one must always

be protected from landmine effects. Even though the Canadian Forces have acquired

some mine-proof vehicles from South Africa, there is a need to develop anti-mine

protection systems for the Canadian B-fleet, ranging from the light support vehicle

wheeled (LSVW) to the heavy engineer support vehicle (HESV). To help meet this

requirement, the Defence Research Establishment Valcartier has undertaken a defence

R&D project to better protect the occupants of soft-skinned vehicles from landmine

effects (see [2, 3]).

To predict or simulate the motion of a vehicle and its occupants submitted

to a landmine explosion, one needs the capability of predicting the impulse trans-

mitted to the vehicle. This technical memorandum provides algebraic equations to

estimate the total impulse on vehicle plates acting as blast deflectors—an important

counter-measure to redirect the mine effects away from the vehicle’s occupants. These

equations are applied in a series of seven examples to obtain an estimate of the mag-

nitude of the expected impulses and to study the effects of various changes in the

mine/target geometry on the resulting impulses.

These algebraic equations will be helpful to the engineers who need to estimate
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the loads for the design of blast deflectors, and to the scientists who develop anti-mine

protection systems.

To describe the mine/target geometry, a fixed system of coordinates (the ob-

server’s view) is first defined in Chapter 2.

Westin et al. in [4] have developed an empirical equation for the specific im-

pulse transmitted to plates. Chapter 3 proposes an approximation of that empirical

equation from which derived algebraic equations for the total impulse are found and

presented in Chapter 4 for horizontal deflectors; in Chapter 5 for oblique deflectors;

and in Chapter 6 for vertical deflectors.

This work was carried out at DREV under project work unit 2ba15, Surviv-

ability and Lethality Assessment and Modeling Software, between January and March

1998.

2 REFERENCE SYSTEM

The origin O of the xyz-axes is located at the center of the mine, buried at

a depth δ, as shown in Fig. 1. The horizontal plane is the xy-plane and the z-axis

points towards the sky.

3 FUNDAMENTAL MODEL

The impulse produced from a landmine explosion is mainly the result of det-

onation products and soil ejecta impacting the target at high velocity (see [4]). The

loading generated from the impulse is characterized by a high pressure during a short

period of time. The duration is much shorter than the natural period of the vehicle
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x
Mine

z

O

(Air)

(Soil)

FIGURE 1 – The Coordinates System

structure, and so the exact shape of the pressure-time loading is not as important for

the calculation of the vehicle’s response as its integral over time. The integral of the

pressure loading over time is called the specific impulse.

In [4], Westin et al. proposed an empirical equation to predict the vertical

component of the specific impulse (impulse per unit area) for buried charges with a

pancake shape. The vertical component of the specific impulse is fundamental for the

characterization of the total impulse since, as will be shown in Chapters 5 and 6, the

other components are easily derived from the vertical component.

3.1 Vertical Component of the Specific Impulse

Let P = P (x, y, z) be a point on a horizontal blast deflector, as shown in

Fig. 2. The empirical expression for the vertical specific impulse iv at P is, from [4],

iv(x, y) = 0.1352

(
1 +

7 δ

9 z

) (
tanh(0.9589 ζ d)

ζ d

)3.25
√
ρE

z
[Pa·s] (1)
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where

z = standoff distance of P to the center of the mine [m]

d =
√
x2 + y2 = lateral distance to center of the mine [m]

δ = burial depth to center of the mine [m]

ρ = soil density [kg/m3]

E = energy release in explosive charge [J]

A = cross-sectional area of the mine [m2]

and

ζ =
δ

z5/4A3/8 tanh
((

2.2 δ
z

)3/2
) [m-1] .

x
Mine (E,A)

z

d

z

iv

Blast
DeflectorP

FIGURE 2 – Horizontal Blast Deflector

Because Eq. (1) is an empirical one, it should be used only when those four

criteria are all met:

0.106 6 δ

z
6 1.00 (2)

6.35 6 E/A
ρ c2 z

6 150.0 (3)
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0.154 6
√
A
z
6 4.48 (4)

0 6 d

z
6 19.3 (5)

The parameter c in Eq. (3) is the seismic P-wave velocity in the soil expressed in

[m/s].

The function

f(ζ d)
def
=

(
tanh(0.9589 ζ d)

ζ d

)3.25

(6)

in Eq. (1) is not defined at ζ d = 0; when ζ d→ 0, f(ζ d) goes to

lim
ζ d→0

f(ζ d) = (0.9589)3.25 = 0.8725.

Then for small values of ζ d (e.g. ζ d < 0.05 ) Eq. (1) for the vertical component of

the impulse becomes

iv(x, y) ' 0.1180

(
1 +

7 δ

9 z

)√
ρE

z
. (7)

3.2 Modified Empirical Function

The total impulse on a blast deflector is given by the integral of the specific

impulse over the total area of that blast deflector.

iv =
∫∫
A

iv(x, y) dx dy [N·s] .

An algebraic equation for the total impulse is sought in this memorandum. To

integrate analytically Eq. (1) is made impossible by the form of the function f(ζ d)

defined with Eq. (6). The solution proposed in this document is to approximate f(ζ d)
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by a function for which an analytical solution of the integral of the specific impulse

over the entire plate surface exists. The function g(ζ d) defined as

f(ζ d) ≈ g(ζ d)
def
= κ1

(
1 + κ2 (ζ d)6

)
e−κ3 (ζ d)2 , g(0) = lim

ζ d→0
f(ζ d) (8)

meets this requirement and its parameters were sought using the Mathematica
TM

function NonlinearFit (see [5]). The best values for the fit are

κ1 = 0.8725, κ2 = 0.04837, κ3 = 0.8917. (9)

Fig. 3 compares the functions f and g and the absolute error f−g is plotted in Fig. 4.

d

g( d)

f( d)

0 0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

FIGURE 3 – The Approximation of f(ζ d) by g(ζ d)

d

f(
d

) 
- 
g(

d
)

0 1 2 3 4 5 6
-0.01

-0.005

0

0.005

0.01

0.015

FIGURE 4 – The Absolute Error f(ζ d)− g(ζ d)
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4 HORIZONTAL BLAST DEFLECTORS

4.1 Total Impulse

The total impulse iv on a horizontal blast deflector is given by the integral of

the specific impulse iv(x, y) over the entire plate surface. If the projection of the blast

deflector on the xy-plane is as seen in Fig. 5, then the total vertical impulse on the

deflector is

iv =
∫ x1

x0

∫ y1

y0

iv(x, y) dy dx

= 0.1352

(
1 +

7 δ

9 z

) √
ρE

z

∫ x1

x0

∫ y1

y0

f(ζ d) dy dx . (10)

P

x
Mine

y

x x

y

y

d

Blast
Deflector

FIGURE 5 – Horizontal Blast Deflector over the xy-Plane

4.2 Approximate Solution

There are no known analytical solution for the integral in Eq. (10). This

integral can be numerically integrated but the process is time consuming and does

not generate an algebraic equation for the total impulse. The solution proposed is to

use the approximation (8) to replace f(ζ d) by g(ζ d) in Eq. (10).
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The vertical impulse on the deflector can now be rewritten as

iv = κ0 (S1 + S2)

(
1 +

7 δ

9 z

) √
ρE

z
(11)

where

κ0 = 0.1352κ1 = 0.1180 (12)

S1 =
∫ x1

x0

∫ y1

y0

e−κ3(ζ d)2 dy dx =
π∆x ∆y

4κ3 ζ2
(13)

S2 =
∫ x1

x0

∫ y1

y0

κ2 (ζ d)6 e−κ3(ζ d)2 dy dx =
κ2

16κ4
3 ζ

2

5∑
i=1

Ai (14)

∆x = erf(
√
κ3 x1 ζ)− erf(

√
κ3 x0 ζ) (15)

∆y = erf(
√
κ3 y1 ζ)− erf(

√
κ3 y0 ζ) (16)

A1 =
√
κ3 x1 ζ e

−κ3 x2
1 ζ

2 ×[
12
√
κ3 ζ

(
e−κ3 y2

1 ζ
2
(
3 y1 + κ3 x

2
1 y1 ζ

2 + κ3 y
3
1 ζ

2
)

−e−κ3 y2
0 ζ

2
(
3 y0 + κ3 x

2
1 y0 ζ

2 + κ3 y
3
0 ζ

2
))

−
√
π∆y

(
33 + 16κ3 x

2
1 ζ

2 + 4κ2
3 x

4
1 ζ

4
)]

(17)

A2 = 3
√
κ3 x0 ζ e

−κ3 x2
0 ζ

2 ×[
4 ζ
√
κ3

(
3 y0 e

−κ3 y2
0 ζ

2 − 3 y1 e
−κ3 y2

1 ζ
2

+ κ3 y
3
0 ζ

2 e−κ3 y2
0 ζ

2

−κ3 y
3
1 ζ

2 eκ3 y2
1 ζ

2
)

+ 11
√
π∆y

]
(18)

A3 = −4
√
π κ

5
2
3 x

5
0 ζ

5∆y e
−κ3 x2

0 ζ
2

(19)

A4 = 4κ
3
2
3 x

3
0 ζ

3 e−κ3 x2
0 ζ

2
[
3 ζ
√
κ3

(
y0 e

−κ3 y2
0 ζ

2 − y1 e
−κ3 y2

1 ζ
2
)

+ 4
√
π∆y

]
(20)
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A5 =
√
π∆x

33
√
κ3 y0 ζ

eκ3 y2
0 ζ

2 − 33
√
κ3 y1 ζ

eκ3 y2
1 ζ

2 +
16κ

3
2
3 y

3
0 ζ

3

eκ3 y2
0 ζ

2

−16κ
3
2
3 y

3
1 ζ

3

eκ3 y2
1 ζ

2 +
4κ

5
2
3 y

5
0 ζ

5

eκ3 y2
0 ζ

2 −
4κ

5
2
3 y

5
1 ζ

5

eκ3 y2
1 ζ

2 + 24
√
π∆y

 (21)

The function erf(·) in Eqs (15) and (16) is called the error function. The

appendix gives the definition of the error function and presents an algorithm for its

evaluation.

Example 1 To compare a numerical solution of Eq. (10) to the proposed algebraic solution (11), consider the
explosion of a TMA-3 anti-tank mine under a vehicle equipped with a horizontal blast deflector installed 40 cm above
the ground. The deflector area is 1 m by 1 m and is centered above the mine. The TMA-3 mine is 26.5 cm in diameter
and 8 cm in height, contains 6.5 kg of cast TNT and is buried under 3 cm of soil of density 1.6 g/cm3. Then

z = 0.40 + 0.03 + 0.08
2

= 0.47 [m]

x0 = y0 = − 1
2

[m]

x1 = y1 = 1
2

[m]

δ = 0.03 + 0.08
2

= 0.07 [m]

ρ = 1600 [kg/m3]

E = 6.5 [kg]× 4.516 [MJ/kg] = 2.935 107 [J]

A =
π × 0.2652

4
= 0.055 [m2]

ζ =
0.07

(0.47)5/4 (0.055)3/8 tanh

((
2.2 0.07

0.47

)3/2) = 2.879 [m-1]

Eq. (10) becomes

iv = 0.1352

(
1 +

7 (0.07)

9 (0.47)

) √
(1600)(2.935 107)

0.47

×
∫∫ (

tanh((0.9589)(2.897) d)

2.897 d

)3.25

dx dy

= 1503× 4

∫ 1/2

0

∫ 1/2

0

 tanh

(
2.778

√
x2 + y2

)
√
x2 + y2

3.25

dx dy .

This integral was solved with the Mathematica
TM

function NIntegrate1 resulting in iv ' 17.37 [kN·s]. The evaluation
of the algebraic Eq. (11) gives iv ' 17.38 [kN·s], a difference of less than 0.07%.

1The function NIntegrate is documented in [6]. It uses the Genz-Malik adaptive algorithm to
solve the multidimensional integrals.
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4.3 Square Deflectors Centered above the Mine

Consider a square blast deflector of width l centered above the mine. By

substituting x1 = y1 = l/2 and x0 = y0 = −l/2 into Eqs (13) and (14), one gets

S1 =
π

κ3 ζ2
erf2 (

√
κ3 l ζ/2) (22)

and

S2 =
κ2

16κ4
3 ζ

2

[(
36κ3 l

2ζ2 + 6κ2
3 l

4 ζ4
)
e−κ3 l2 ζ2/2 + 96π erf2 (

√
κ3 l ζ/2)

−l ζ√κ3 π
(
132 + 16κ3 l

2 ζ2 + κ2
3 l

4 ζ4
)

erf (
√
κ3 l ζ/2) e−κ3 l2 ζ2/4

]
. (23)

4.3.1 Effect of the Plate Area

When the area A = l2 of the blast deflector increases, the total vertical impulse

increases also. However, if the standoff distance is kept constant, the impulse will

eventually reach a limit value given by

lim
l→∞

iv = κ0

(
1 +

7 δ

9 z

) √
ρE

z
lim
l→∞

(S1 + S2)

= κ0

(
1 +

7 δ

9 z

) √
ρE

z
lim
l→∞

[
π

κ3 ζ2

(
1 +

6κ2

κ3
3

)
erf2 (

√
κ3 l ζ/2)

]

=

(
κ0 π

κ3 ζ2

) (
1 +

6κ2

κ3
3

) (
1 +

7 δ

9 z

) √
ρE

z
.

Because the explosion of a mine under a deflector of infinite area is the worst

possible case, this equation gives the upper limit of the impulse on any blast deflector
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with a standoff distance of z meters:

imax =

(
0.5857

ζ2

) (
1 +

7 δ

9 z

) √
ρE

z
(24)

Example 2 Consider the parameters of Ex. 1 on page 9 with, this time, a deflector l m wide by l m long.
Fig. 6 is a plot of Eq. (11) with S1 and S2 given by (22) and (23), respectively. The maximum impulse computed
with Eq. (24) is 24.9 [kN·s].

0 0.5 1 1.5 2 2.5 3
l   [m]

5

10

15

20

25

30

i v
[k

N
·s

]

FIGURE 6 – Total Impulse as a Function of Plate Width for Ex. 2

4.3.2 Effect of the Standoff Distance

The total vertical impulse iv decreases rapidly with the standoff distance z.

Example 3 Once again, consider the parameters of Ex. 1 on page 9. This time, the standoff distance goes
from 15 cm to 4 m. Fig. 7 shows the decrease of the total impulse computed with Eq. (11).

5 OBLIQUE BLAST DEFLECTORS

5.1 Specific Impulse

When the blast deflector is not horizontal but at angle 0 < α < π from the

vertical, as in Fig. 8, the resulting specific impulse on the plate at location P (x, y, z)
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0 1 2 3 4

5

10

15

20

25

30

35

40

z   [m]

i v
[k

N
·s

]

FIGURE 7 – Total Impulse as a Function of Standoff Distance for Ex. 3

is also a function of α.

i

d

n

z

iv ir

P

FIGURE 8 – Oblique Blast Deflector

Let ir be the radial specific impulse along the direction of the target point.

From Fig. 9, the specific impulse in normal to the blast deflector is found from ir by

(in) (dA) = (ir cos θ)(cos θ dA)

or in = ir cos2 θ. Similarly, iv = ir cos2 β. By combining these last two equations

together, one gets the relation between the known component of the specific impulse

iv to the sought component in;

in = iv
cos2 θ

cos2 β
. (25)

Eq. (25) is different from the one used in [7], where the squares of the cosines are

missing.
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in

ir

FIGURE 9 – Pressure Area for in and ir

5.2 Total Impulse

For a blast deflector positioned as in Fig. 10, the deflector is in the plane

z = z1 + (x1 − x) cotα. The area on which the impulse is applied is

A =
(x1 − x0)(y1 − y0)

sinα
(oblique deflector surface)

and the element of integration dA is

dA =
dx dy

sinα
.

The total normal impulse on the deflector is then

in = 0.1352
∫ x1

x0

∫ y1

y0

 cos2 θ

cos2 β sinα

(
1 +

7 δ

9 z

)
f(ζ d)

√
ρE

z

 dy dx (26)
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where

z = λ− x cotα (27)

λ = z1 + x1 cotα (28)

cos θ =
x cosα+ z sinα√

x2 + y2 + z2
(29)

cos β =
z√

x2 + y2 + z2
. (30)

The constant λ is the standoff distance when x = 0. By combining Eqs (27) to (30),

the ratio of trigonometric functions in (26) becomes

cos2 θ

cos2 β sinα
=

(x cosα+ z sinα)2

z2 sinα
=

λ2 sinα

(λ− x cotα)2
. (31)

x

z

x

x

y
y

P

in
iv

ir

z

FIGURE 10 – Oblique Blast Deflector over the xyz-Plane

5.3 Approximate Solution

The total normal impulse in, as given by Eq. (26), cannot be analytically inte-

grated. However, with the approximation (8), an algebraic solution can be obtained

along the y axis. There is still a need to numerically integrate the resulting equation
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along the x axis but the number of summations drops at least from N2 to N . For ex-

ample, if a grid of 100 elements (as in [7]) are used to numerically integrate (26), four

elements are usually enough with this proposed approximate solution (see Ex. 5–7).

5.3.1 Integration Along the y Axis

Substituting Eq. (8) into (26) and integrating along y gives:

in ' 0.1352
∫ x1

x0

∫ y1

y0

cos2 θ

cos2 β sinα

(
1 +

7 δ

9 z

)
g(ζ d)

√
ρE

z
dy dx

= κ0

∫ x1

x0

cos2 θ

cos2 β sinα

(
1 +

7 δ

9 z

) [
Γ1(x, z) + Γ2(x, z)

]√
ρE

z
dx (32)

where

Γ1(x, z) =
∆y

√
π

2 ζ
√
κ3

e−κ3 ζ2 x2

(33)

Γ2(x, z) =
κ2 e

−κ3 ζ2 x2

16 ζ κ
7/2
3

(
Λ2(x, z) +

1∑
i=0

(−1)i+1 Λi(x, z) e
−κ3 ζ2 y2

i

)
(34)

ζ = ζ(z) = ζ(λ− x cotα)

Λ2(x, z) = ∆y

√
π
(
15 + 18κ3 ζ

2 x2 + 12κ2
3 ζ

4 x4 + 8κ3
3 ζ

6 x6
)

Λi(x, z) = Ci1 + Ci2 (5 + 6κ3 ζ
2 x2) + Ci3 (5 + 6κ3 ζ

2 x2 + 4κ2
3 ζ

4 x4)

Ci1 = −8κ
5/2
3 ζ5 y5

i Ci2 = −4κ
3/2
3 ζ3 y3

i

Ci3 = −6κ
1/2
3 ζ yi i = 0, 1

Eq. (32) can be rewritten as

in = κ0

∫ x1

x0

p(x) dx (35)

where

p(x)
def
=

λ2 sinα

(λ− x cotα)2

(
1 +

7 δ

9 (λ− x cotα)

)
×

[
Γ1(x, z(x)) + Γ2(x, z(x))

] √
ρE

λ− x cotα
. (36)
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Example 4 Consider a blast deflector made of two plates of size 0.5 m by 1 m each and attached in a V-shape,
as shown in Fig. 11. The charge is a TMA-3 anti-tank mine buried with 3 cm of soil. The total impulse on the
deflector is equivalent to four times the total impulse on the area contained in the region x ∈ [0, 0.4] and y ∈ [0, 0.5].
Then, from Eq. (35)

in = 4κ0

∫ 0.4

0

p(x) dx

and from Fig. 11, y0 = 0, y1 = 0.5, cotα = −0.75 (or α = 126.9 deg) and z = 0.47 + 0.75x. From Ex. 1 on page 9,

δ = 0.07 [m]

ρ = 1600 [kg/m3]

E = 2.935 107 [J]

A = 0.055 [m2]

and

ζ =
0.2077

(0.47 + 0.75x)5/4 tanh

[
0.0604

(
1

0.47+0.75 x

)3/2] [m-1] .

The function ζ = ζ(z(x)) for 0 6 x 6 0.4 is plotted in Fig. 12 and is well approximated by the line

ζ ' 2.887 + 0.872x .

The graph of p(x) is shown in Fig. 13.

(Soil)

z

x
Mine

-0.4 m 0.4 m

0.77 m

 = 0.47 m

Blast
Deflector

x

z

y

Mine

50 cm

1 m

4
7
 cm

106˚

x  = 0.4
1

y = 0.5
1

Integration
region

FIGURE 11 – V-Shaped Blast Deflector Centered Above the Mine

5.3.2 Integration Along the x Axis

Let

ξ =
2x− x0 − x1

x1 − x0

;
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x

(z(x))

0 0.1 0.2 0.3 0.4
2.8

2.9

3

3.1

3.2
2.887 + 0.872 x

FIGURE 12 – Graph of ζ(z(x)) for Ex. 4

x

p
(x

) 
 [

kN
·s

/m
]

0 0.1 0.2 0.3 0.4

20

40

60

80

100

FIGURE 13 – Graph of Eq. (36) with the Parameters of Ex. 4
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then Eq. (35) becomes

in = κ0
x1 − x0

2

∫ 1

−1
p
(
ξ (x1−x0)+x0+x1

2

)
dξ . (37)

This equation can be numerically integrated using a Gaussian quadrature. A 4-point

Gauss-Legendre integration is usually enough to integrate a smooth function such as

p(x) in Ex. 4 on page 16 (Fig. 13).

The total normal impulse on an oblique blast deflector can then be approxi-

mated by

in ≈ κ0
x1 − x0

2

N∑
i=1

wi p
(
ξi (x1−x0)+x0+x1

2

)
(38)

where ξi and wi are, respectively, the abscissas and weights of the N -point Gauss-

Legendre quadrature formula. Values from [8] of ξi and wi for N = 4 and 6 are shown

in Table I.

TABLE I
Gauss-Legendre Abscissas and Weights

N i ξi wi
4 1, 2 ±0.33998 10435 84856 0.65214 51548 62546

3, 4 ±0.86113 63115 94053 0.34785 48451 37454
6 1, 2 ±0.23861 91860 83197 0.46791 39345 72691

3, 4 ±0.66120 93864 66265 0.36076 15730 48139
5, 6 ±0.93246 95142 03152 0.17132 44923 79170

Example 5 The total impulse on the V-shaped deflector of Ex. 4 on page 16 is given by Eq. (38) as

in ' 4× 0.0236 [w1 (p(0.1320) + p(0.2680)) + w3 (p(0.0280) + p(0.3722))]

= 6.97 [kN·s] .

The integral (26) was solved with the Mathematica
TM

function NIntegrate resulting in in ' 6.99 [kN·s], a difference
of 0.3%.

5.4 Deflectors Centered on the x Axis

Let l be the length of the deflector along y. Because the deflector is centered

on the x axis, the integral along y for −l/2 6 y 6 l/2 is twice the value of the integral
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on the interval 0 6 y 6 l/2. Then Eqs (33) and (34), used in the calculation of p(x),

can be written as

Γ1(x, z) = erf (
√
κ3 ζ l/2)

√
π

κ3 ζ2
e−κ3 ζ2 x2

(39)

and

Γ2(x, z) =
κ2 e

−κ3 ζ2 x2

8κ
7/2
3 ζ

{[
−κ5/2

3 ζ5 l5/4− κ3/2
3 ζ3 l3

(
5 + 6κ3 ζ

2 x2
)
/2

−3κ
1/2
3 ζ l

(
5 + 6κ3 ζ

2x2 + 4κ2
3 ζ

4 x4
)]

e−κ3 ζ2 l2/4 +

√
π
(
15 + 18κ3 ζ

2 x2 + 12κ2
3 ζ

4 x4 + 8κ3
3 ζ

6 x6
)

erf(
√
κ3 ζ l/2)

}
. (40)

6 VERTICAL BLAST DEFLECTORS

6.1 Specific Impulse

When the blast deflector is vertical, α = 0 or π and the deflector is in the

plane x = x0 (Fig. 14). The deflector is in the region y ∈ [y0, y1], z ∈ [z0, z1] and an

approach similar to Chapter 5 is applied. The ratio of cosines in Eq. (25) becomes

cos2 θ

cos2 β
=
(
x0

z

)2

and the horizontal specific impulse on the vertical blast deflector is

ih = iv

(
x0

z

)2

. (41)

6.2 Total Impulse

The total impulse on a vertical blast deflector is given by

ih = 0.1352
∫ z1

z0

∫ y1

y0

(x0

z

)2
(

1 +
7 δ

9 z

)
f(ζ d)

√
ρE

z

 dy dz (42)
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y
ih

P

FIGURE 14 – Vertical Blast Deflector

where d =
√
x2

0 + y2.

6.3 Approximate Solution

By applying the method of Section 5.3, the total impulse on a vertical blast

deflector can be written as

ih = κ0

∫ z1

z0
q(z) dz (43)

where

q(z)
def
=
x2

0

√
ρE

z5/2

(
1 +

7 δ

9 z

) [
Γ1(x0, z) + Γ2(x0, z)

]
(44)

and Γ1(x0, z), Γ2(x0, z) are given by Eqs (33) and (34) with x = x0. Eq. (43) can be

approximated by

ih ≈ κ0
z1 − z0

2

N∑
i=1

wi q
(
ξi (z1−z0)+z0+z1

2

)
(45)

where ξi and wi are given in Table I.
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Example 6 Consider a square vertical blast deflector of area A = 1 m2 and centered on the x axis. Let us
predict the total impulse when x0 ∈ [0,∞) and the remaining mine and plate geometries are as those of Ex. 1 on
page 9. Eq. (44), with the use of Eqs (39) and (40) for a symmetric problem, is plotted in Fig. 15. This function
was then integrated with a 4-point quadrature (Eq. (45)) and plotted in dashed lines in Fig. 16; the solid line is the

solution of Eq. (42) directly from Mathematica
TM

. Discrepancies between the two curves arise from the difference
between f(ζ d) and g(ζ d) for ζ d > 2.5 (Fig. 3).

x   [m]0

z [m]

q  [kN·s]

0

0.2
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0.6
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1.4
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20

40

60

0

0.2

0.4

0.6

0.8

1

FIGURE 15 – Graph of Eq. (44) for Ex. 6

x   [m]0

i  
  [

kN
·s

]
n

Mathematica — Equation (38)

Algebraic — Equation (41)

0.25 0.5 0.75 1 1.25 1.5 1.75 2

0.25

0.5

0.75

1
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FIGURE 16 – Total Impulse as a Function of x0 for Ex. 6

Ex. 6 above illustrates how the specific impulse modeled by Westin et al. in [4]

is sensitive to the lateral distance d =
√
x2 + y2 from the center of the mine. In Ex. 3

on page 11, the effect of the impulse is still being felt 4 m above the mine (Fig. 7).

However, in Ex. 6, the maximum impulse is at a lateral distance of 50 cm, and drops

rapidly after that (Fig. 16). In both cases, the plate was 1 m2. That is a consequence
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of the assumptions that the loading produced from a landmine explosion is mainly

the result of detonation products and soil ejecta, which are propulsed upwards like in

a cone, and that blast overpressure plays only a secondary role.

Example 7 Consider the V-shaped deflector in Fig. 17 where γ varies from 0 (a vertical plate) to 180 deg (a
horizontal plate). The two 1 m long plates are centered above the mine and the total deflector has a presented area
A = 1 m2 on the xy plane for γ > 0. The total impulse on the deflector is twice the impulse on one single plate.
Then,

γ ∈ [0, 180] [deg]

α = π

(
1− γ

360

)
[rad]

x0 = 0

x1 = 0.5 [m]

z0 = λ = 0.47 [m]

z1 = λ− 0.5 cotα [m]

y ∈ [−0.5, 0.5] [m]

and the impulse is twice the value predicted by Eqs (11), (38) or (45). The total impulse for selected angles γ are
given in Table II and plotted at Fig. 18 along with Eq. (38), using N = 4.

(Soil)

z

x
Mine

z
1

Blast
Deflector

=  = 0.47 mz
0

0.5 m-0.5 m

4
0
 c

m

FIGURE 17 – V-Shaped deflector of Variable Angle γ
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TABLE II
Impulse on the Variable V-Shaped Deflector for Ex. 7

γ [deg] α [rad] Equation used Impulse [kN·s]
0 π (45) 0

22.5 15π/16 (38) 0.5
45 7π/8 (38) 1.7
90 3π/4 (38) 5.5
135 5π/8 (38) 10.6
180 π/2 (11) 17.4

  [deg]

i  
  [

kN
·s

]
h
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FIGURE 18 – Impulse as a Function of the Angle γ in Fig. 17
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7 CONCLUSIONS

Algebraic equations were derived to predict the total impulse on a flat blast

deflector at an arbitrary orientation. Furthermore, a very simple equation predicting

the maximum impulse at a given standoff distance was also derived. These equations

can easily be coded in either a spreadsheet or a computer program.

As they stand, these equations are an aid to engineers who need to estimate

the loadings to be expected for the design of blast deflectors. However, more research

is required to model and predict the effects of the impulse produced from a mine

explosion under a wheel combined with blast deflectors loadings.
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APPENDIX

The Error Function

The function erf(x) is the error function defined by

erf(x) =
2√
π

∫ x

0
e−t

2

dt ≡
P (1

2
, x2) if x > 0

−P (1
2
, x2) if x < 0

where P (1
2
, x2) is the incomplete gamma function. Reference [9] proposes a Chebyshev

fitting for erf(x) with a fractional error everywhere less than 1.2 10−7:

erf(x) '
1− θ x > 0

θ − 1 x < 0

with

θ = t exp(−x2 − 1.26551223 + t (1.00002368 + t (0.37409196 +

t (0.09678418 + t (−0.18628806 + t (0.27886807 + t (−1.13520398 +

t (1.48851587 + t (−0.82215223 + 0.17087277 t))))))))

and

t =
1

1 + |x|
2

.


